Обработка космических снимков проводилась в программе ScanEx Image Processor v2.0. Так как границы затопления, полученные по космическим снимкам, необходимо сравнивать между собой, совмещать с картой местности, то необходимым условием является их метрическая точность. В виду отсутствия более точного картографического материала космические снимки привязывались к цифровой топографической карте Нижегородской области масштаба 1 : 200 000. В качестве опорных точек использовались, как правило, пересечения дорог. После того как достигалось наиболее четкое изображение, оно сохранялось в формате BMP с географической привязкой в формате ГИС MapInfo Professional.

В программе ScanEx Image Processor v2.0 производилась автоматическая векторизация зон затопления по снимкам в инфракрасных каналах, после чего они редактировались в ГИС MapInfo Professional на этапе создания геоинформационной базы данных зон затопления прирусловых территорий рек Волга и Ока. Прирусловые территории рек Волга и Ока были поделены в зависимости от местоположения гидропостов на участки так, чтобы гидропост находился на середине участка, как показано на рис. 1.

Рис. 1. Схема участков паводкового контроля и размещения гидропостов

Для этих слоев была создана и заполнена атрибутивная таблица. Структура таблицы атрибутивных данных отражена в табл.1.

Таблица 1 – Структура таблицы атрибутивных данных

Название поля

Тип

Размер

Описание

N

GP

H

proH

Data

Satellite

River

Area

Символьное

Символьное

Символьное

Целое

Дата

Символьное

Символьное

Вещественное

3

15

6

15

15

Номер участка

Наименование гидропоста

Уровень, зафиксированный на гидропосту

Обеспеченность уровня

Дата съемки

Наименование КА

Название реки

Площадь

Обеспеченности максимальных уровней воды рассчитывались в соответствии с СП 33-101-2003 «Определение основных расчетных гидрологических характеристик».

Геоинформационная база данных затопления территорий позволяет производить совмещение границ урезов воды при различных уровнях воды, как показано на рис. 2. При этом можно выделить зоны опасности затопления и определить их площади. Важным условием при определении площадей затопления является учет прибрежных озер.

Космический мониторинг и оценка риска затопления урбанизированных территорий в периоды половодий Часть 4

Рис. 2. Совмещение зеркал воды на участке V1

Геоинформационная база данных затопления территорий, полученная по космическим снимкам, обладает преимуществами: объективностью и достоверностью; имеет и значительный недостаток – ограниченное число моделей затопления, которое зависит от наличия космических снимков на территорию при различных уровнях воды. Для преодоления названного недостатка возможно применение методов интерполяции между имеющимися урезами воды и экстраполяции за их приделами с использованием цифровой модели рельефа. Модель рельефа в этом случае лучше всего иметь в виде грида. Для данного исследования использовался грид, полученный в результате обработки матрицы высот, предоставленной для исследования Главным управлением МЧС России по Нижегородской области. На рис. 3 показано совмещение урезов воды и изображения рельефа, полученного по гриду.

Космический мониторинг и оценка риска затопления урбанизированных территорий в периоды половодий Часть 4

Рис.3. Сочетание зеркал воды с изображением рельефа по способу ступеней высот

Красным цветом показана территория, затапливаемая при превышении уровня воды обеспеченностью 50 % на 2,5 метра. Данные, полученные методом экстраполяции, в этом случае имеют справочный характер и зависят от актуальности и точности модели рельефа.

Таким образом, используя ЦМР для тестовых участков V1 и V2, были смоделированы зоны затопления при обеспеченности уровня воды 25% и 10%. После чего получены их геоинформационные модели в ГИС MapInfo Professional.